Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights
نویسندگان
چکیده
منابع مشابه
On Weighted Mean Convergence of Lagrange Interpolation for General Arrays
For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some weighting factor ? We obtain a necessary and su¢ cient condition for ...
متن کاملPointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights
For a general class of exponential weights on the line and on (−1, 1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdős weights) and even weights which vanish strongly near ±1, for example Pollaczek type weights. 1991...
متن کاملQuadrature Sums and Lagrange Interpolation for General Exponential Weights
where > 0. Once the theory had been developed in its entirety, it became clear that one could simultaneously treat not only weights like those above, but also not necessarily even weights on a general real interval. See [3], [12], [16] for various perspectives on this type of potential theory and its applications. One important application is to Lagrange interpolation. Mean convergence of Lagra...
متن کاملMean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules
The connection between convergence of product integration rules and mean convergence of Lagrange interpolation in L, (1 <p < 00) has been thoroughly analysed by Sloan and Smith [37]. Motivated by this connection, we investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials associated with Freud weights on R. Our results apply to the weights exp(-x”/2), m = 2,...
متن کاملOn Mean Convergence of Lagrange Interpolation for General Arrays
For n 1, let fxjngnj=1 be n distinct points in a compact set K R and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let v be a suitably restricted function on K. What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ]) v kLp(K)= 0 for every continuous f :: K ! R ? We show that it is necessary and su cient that there exists r ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00439-8